Importance Weighting Approach in Kernel Bayes' Rule

5 Feb 2022  ·  Liyuan Xu, Yutian Chen, Arnaud Doucet, Arthur Gretton ·

We study a nonparametric approach to Bayesian computation via feature means, where the expectation of prior features is updated to yield expected kernel posterior features, based on regression from learned neural net or kernel features of the observations. All quantities involved in the Bayesian update are learned from observed data, making the method entirely model-free. The resulting algorithm is a novel instance of a kernel Bayes' rule (KBR), based on importance weighting. This results in superior numerical stability to the original approach to KBR, which requires operator inversion. We show the convergence of the estimator using a novel consistency analysis on the importance weighting estimator in the infinity norm. We evaluate KBR on challenging synthetic benchmarks, including a filtering problem with a state-space model involving high dimensional image observations. Importance weighted KBR yields uniformly better empirical performance than the original KBR, and competitive performance with other competing methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here