Inference algorithms for pattern-based CRFs on sequence data

1 Oct 2012  ·  Rustem Takhanov, Vladimir Kolmogorov ·

We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) $x_1...x_n$ is the sum of terms over intervals $[i,j]$ where each term is non-zero only if the substring $x_i...x_j$ equals a prespecified pattern $\alpha$. Such CRFs can be naturally applied to many sequence tagging problems. We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively $O(n L)$, $O(n L \ell_{max})$ and $O(n L \min\{|D|,\log (\ell_{max}+1)\})$ where $L$ is the combined length of input patterns, $\ell_{max}$ is the maximum length of a pattern, and $D$ is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively $O(n L |D|)$, $O(n |\Gamma| L^2 \ell_{max}^2)$ and $O(n L |D|)$, where $|\Gamma|$ is the number of input patterns. In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an $O(n L)$ algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here