Information-Computation Tradeoffs for Learning Margin Halfspaces with Random Classification Noise

28 Jun 2023  ·  Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Puqian Wang, Nikos Zarifis ·

We study the problem of PAC learning $\gamma$-margin halfspaces with Random Classification Noise. We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms. Concretely, the sample complexity of the problem is $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. We start by giving a simple efficient algorithm with sample complexity $\widetilde{O}(1/(\gamma^2 \epsilon^2))$. Our main result is a lower bound for Statistical Query (SQ) algorithms and low-degree polynomial tests suggesting that the quadratic dependence on $1/\epsilon$ in the sample complexity is inherent for computationally efficient algorithms. Specifically, our results imply a lower bound of $\widetilde{\Omega}(1/(\gamma^{1/2} \epsilon^2))$ on the sample complexity of any efficient SQ learner or low-degree test.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here