Information-Theoretic Generalization Bounds for Transductive Learning and its Applications

8 Nov 2023  ·  Huayi Tang, Yong liu ·

In this paper, we develop data-dependent and algorithm-dependent generalization bounds for transductive learning algorithms in the context of information theory for the first time. We show that the generalization gap of transductive learning algorithms can be bounded by the mutual information between training labels and hypothesis. By innovatively proposing the concept of transductive supersamples, we go beyond the inductive learning setting and establish upper bounds in terms of various information measures. Furthermore, we derive novel PAC-Bayesian bounds and build the connection between generalization and loss landscape flatness under the transductive learning setting. Finally, we present the upper bounds for adaptive optimization algorithms and demonstrate the applications of results on semi-supervised learning and graph learning scenarios. Our theoretic results are validated on both synthetic and real-world datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here