Paper

Intelligent Device Discovery in the Internet of Things - Enabling the Robot Society

The Internet of Things (IoT) is continuously growing to connect billions of smart devices anywhere and anytime in an Internet-like structure, which enables a variety of applications, services and interactions between human and objects. In the future, the smart devices are supposed to be able to autonomously discover a target device with desired features and generate a set of entirely new services and applications that are not supervised or even imagined by human beings. The pervasiveness of smart devices, as well as the heterogeneity of their design and functionalities, raise a major concern: How can a smart device efficiently discover a desired target device? In this paper, we propose a Social-Aware and Distributed (SAND) scheme that achieves a fast, scalable and efficient device discovery in the IoT. The proposed SAND scheme adopts a novel device ranking criteria that measures the device's degree, social relationship diversity, clustering coefficient and betweenness. Based on the device ranking criteria, the discovery request can be guided to travel through critical devices that stand at the major intersections of the network, and thus quickly reach the desired target device by contacting only a limited number of intermediate devices. With the help of such an intelligent device discovery as SAND, the IoT devices, as well as other computing facilities, software and data on the Internet, can autonomously establish new social connections with each other as human being do. They can formulate self-organized computing groups to perform required computing tasks, facilitate a fusion of a variety of computing service, network service and data to generate novel applications and services, evolve from the individual aritificial intelligence to the collaborative intelligence, and eventually enable the birth of a robot society.

Results in Papers With Code
(↓ scroll down to see all results)