Intelligent Reflecting Surface Enabled Sensing: Cramér-Rao Lower Bound Optimization

23 Apr 2022  ·  Xianxin Song, Jie Xu, Fan Liu, Tony Xiao Han, Yonina C. Eldar ·

This paper investigates intelligent reflecting surface (IRS) enabled non-line-of-sight (NLoS) wireless sensing, in which an IRS is deployed to assist an access point (AP) to sense a target in its NLoS region. It is assumed that the AP is equipped with multiple antennas and the IRS is equipped with a uniform linear array. The AP aims to estimate the target's direction-of-arrival (DoA) with respect to the IRS, based on the echo signals from the AP-IRS-target-IRS-AP link. Under this setup, we jointly design the transmit beamforming at the AP and the reflective beamforming at the IRS to minimize the Cram\'er-Rao lower bound (CRLB) on estimation error. Towards this end, we first obtain the CRLB expression for estimating the DoA in closed form. Next, we optimize the joint beamforming design to minimize the CRLB, via alternating optimization, semi-definite relaxation, and successive convex approximation. Numerical results show that the proposed design based on CRLB minimization achieves improved sensing performance in terms of mean squared error, as compared to the traditional schemes with signal-to-noise ratio maximization and separate beamforming.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here