Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback

7 Jul 2022  ·  Adhyyan Narang, Omid Sadeghi, Lillian J Ratliff, Maryam Fazel, Jeff Bilmes ·

In the context of online interactive machine learning with combinatorial objectives, we extend purely submodular prior work to more general non-submodular objectives. This includes: (1) those that are additively decomposable into a sum of two terms (a monotone submodular and monotone supermodular term, known as a BP decomposition); and (2) those that are only weakly submodular. In both cases, this allows representing not only competitive (submodular) but also complementary (supermodular) relationships between objects, enhancing this setting to a broader range of applications (e.g., movie recommendations, medical treatments, etc.) where this is beneficial. In the two-term case, moreover, we study not only the more typical monolithic feedback approach but also a novel framework where feedback is available separately for each term. With real-world practicality and scalability in mind, we integrate Nystrom sketching techniques to significantly reduce the computational cost, including for the purely submodular case. In the Gaussian process contextual bandits setting, we show sub-linear theoretical regret bounds in all cases. We also empirically show good applicability to recommendation systems and data subset selection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here