Label-free detection of exosomes from different cellular sources based on surface-enhanced Raman spectroscopy combined with machine learning models

25 Jan 2024  ·  Yang Li, Xiaoming Lyu, Kuo Zhan, Haoyu Ji, Lei Qin, JianAn Huang ·

Exosomes are significant facilitators of inter-cellular communication that can unveil cell-cell interactions, signaling pathways, regulatory mechanisms and disease diagnostics. Nonetheless, current analysis required large amount of data for exosome identification that it hampers efficient and timely mechanism study and diagnostics. Here, we used a machine-learning assisted Surface-enhanced Raman spectroscopy (SERS) method to detect exosomes derived from six distinct cell lines (HepG2, Hela, 143B, LO-2, BMSC, and H8) with small amount of data. By employing sodium borohydride-reduced silver nanoparticles and sodium borohydride solution as an aggregating agent, 100 SERS spectra of the each types of exosomes were collected and then subjected to multivariate and machine learning analysis. By integrating Principal Component Analysis with Support Vector Machine (PCA-SVM) models, our analysis achieved a high accuracy rate of 94.4% in predicting exosomes originating from various cellular sources. In comparison to other machine learning analysis, our method used small amount of SERS data to allow a simple and rapid exosome detection, which enables a timely subsequent study of cell-cell interactions, communication mechanisms, and disease mechanisms in life sciences.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here