Large-scale shell-model calculations on the spectroscopy of $N<126$ Pb isotopes

10 Jul 2016  ·  Qi Chong, Jia L. Y., Fu G. J. ·

Large-scale shell-model calculations are carried out in the model space including neutron-hole orbitals $2p_{1/2}$, $1f_{5/2}$, $2p_{3/2}$, $0i_{13/2}$, $1f_{7/2}$ and $0h_{9/2}$ to study the structure and electromagnetic properties of neutron deficient Pb isotopes. An optimized effective interaction is used. Good agreement between full shell-model calculations and experimental data is obtained for the spherical states in isotopes $^{194-206}$Pb. The lighter isotopes are calculated with an importance-truncation approach constructed based on the monopole Hamiltonian. The full shell-model results also agree well with our generalized seniority and nucleon-pair-approximation truncation calculations. The deviations between theory and experiment concerning the excitation energies and electromagnetic properties of low-lying $0^+$ and $2^+$ excited states and isomeric states may provide a constraint on our understanding of nuclear deformation and intruder configuration in this region.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Nuclear Theory Nuclear Experiment