Latent Transformations for Discrete-Data Normalising Flows

11 Jun 2020  ·  Rob Hesselink, Wilker Aziz ·

Normalising flows (NFs) for discrete data are challenging because parameterising bijective transformations of discrete variables requires predicting discrete/integer parameters. Having a neural network architecture predict discrete parameters takes a non-differentiable activation function (eg, the step function) which precludes gradient-based learning. To circumvent this non-differentiability, previous work has employed biased proxy gradients, such as the straight-through estimator. We present an unbiased alternative where rather than deterministically parameterising one transformation, we predict a distribution over latent transformations. With stochastic transformations, the marginal likelihood of the data is differentiable and gradient-based learning is possible via score function estimation. To test the viability of discrete-data NFs we investigate performance on binary MNIST. We observe great challenges with both deterministic proxy gradients and unbiased score function estimation. Whereas the former often fails to learn even a shallow transformation, the variance of the latter could not be sufficiently controlled to admit deeper NFs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here