Learning an internal representation of the end-effector configuration space

3 Oct 2018  ·  Alban Laflaquière, Alexander V. Terekhov, Bruno Gas, J. Kevin O'Regan ·

Current machine learning techniques proposed to automatically discover a robot kinematics usually rely on a priori information about the robot's structure, sensors properties or end-effector position. This paper proposes a method to estimate a certain aspect of the forward kinematics model with no such information. An internal representation of the end-effector configuration is generated from unstructured proprioceptive and exteroceptive data flow under very limited assumptions. A mapping from the proprioceptive space to this representational space can then be used to control the robot.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here