Learning Crisp Edge Detector Using Logical Refinement Network

24 Jul 2020  ·  Luyan Liu, Kai Ma, Yefeng Zheng ·

Edge detection is a fundamental problem in different computer vision tasks. Recently, edge detection algorithms achieve satisfying improvement built upon deep learning. Although most of them report favorable evaluation scores, they often fail to accurately localize edges and give thick and blurry boundaries. In addition, most of them focus on 2D images and the challenging 3D edge detection is still under-explored. In this work, we propose a novel logical refinement network for crisp edge detection, which is motivated by the logical relationship between segmentation and edge maps and can be applied to both 2D and 3D images. The network consists of a joint object and edge detection network and a crisp edge refinement network, which predicts more accurate, clearer and thinner high quality binary edge maps without any post-processing. Extensive experiments are conducted on the 2D nuclei images from Kaggle 2018 Data Science Bowl and a private 3D microscopy images of a monkey brain, which show outstanding performance compared with state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here