Learning Geometric-Aware Properties in 2D Representation Using Lightweight CAD Models, or Zero Real 3D Pairs

Cross-modal training using 2D-3D paired datasets, such as those containing multi-view images and 3D scene scans, presents an effective way to enhance 2D scene understanding by introducing geometric and view-invariance priors into 2D features. However, the need for large-scale scene datasets can impede scalability and further improvements. This paper explores an alternative learning method by leveraging a lightweight and publicly available type of 3D data in the form of CAD models. We construct a 3D space with geometric-aware alignment where the similarity in this space reflects the geometric similarity of CAD models based on the Chamfer distance. The acquired geometric-aware properties are then induced into 2D features, which boost performance on downstream tasks more effectively than existing RGB-CAD approaches. Our technique is not limited to paired RGB-CAD datasets. By training exclusively on pseudo pairs generated from CAD-based reconstruction methods, we enhance the performance of SOTA 2D pre-trained models that use ResNet-50 or ViT-B backbones on various 2D understanding tasks. We also achieve comparable results to SOTA methods trained on scene scans on four tasks in NYUv2, SUNRGB-D, indoor ADE20k, and indoor/outdoor COCO, despite using lightweight CAD models or pseudo data.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here