Learning Mixture Structure on Multi-Source Time Series for Probabilistic Forecasting

22 Feb 2023  ·  Tian Guo ·

In many data-driven applications, collecting data from different sources is increasingly desirable for enhancing performance. In this paper, we are interested in the problem of probabilistic forecasting with multi-source time series. We propose a neural mixture structure-based probability model for learning different predictive relations and their adaptive combinations from multi-source time series. We present the prediction and uncertainty quantification methods that apply to different distributions of target variables. Additionally, given the imbalanced and unstable behaviors observed during the direct training of the proposed mixture model, we develop a phased learning method and provide a theoretical analysis. In experimental evaluations, the mixture model trained by the phased learning exhibits competitive performance on both point and probabilistic prediction metrics. Meanwhile, the proposed uncertainty conditioned error suggests the potential of the mixture model's uncertainty score as a reliability indicator of predictions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here