Learning robust visual representations using data augmentation invariance

11 Jun 2019  ·  Alex Hernández-García, Peter König, Tim C. Kietzmann ·

Deep convolutional neural networks trained for image object categorization have shown remarkable similarities with representations found across the primate ventral visual stream. Yet, artificial and biological networks still exhibit important differences. Here we investigate one such property: increasing invariance to identity-preserving image transformations found along the ventral stream. Despite theoretical evidence that invariance should emerge naturally from the optimization process, we present empirical evidence that the activations of convolutional neural networks trained for object categorization are not robust to identity-preserving image transformations commonly used in data augmentation. As a solution, we propose data augmentation invariance, an unsupervised learning objective which improves the robustness of the learned representations by promoting the similarity between the activations of augmented image samples. Our results show that this approach is a simple, yet effective and efficient (10 % increase in training time) way of increasing the invariance of the models while obtaining similar categorization performance.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here