Learning Routines for Effective Off-Policy Reinforcement Learning

5 Jun 2021  ·  Edoardo Cetin, Oya Celiktutan ·

The performance of reinforcement learning depends upon designing an appropriate action space, where the effect of each action is measurable, yet, granular enough to permit flexible behavior. So far, this process involved non-trivial user choices in terms of the available actions and their execution frequency. We propose a novel framework for reinforcement learning that effectively lifts such constraints. Within our framework, agents learn effective behavior over a routine space: a new, higher-level action space, where each routine represents a set of 'equivalent' sequences of granular actions with arbitrary length. Our routine space is learned end-to-end to facilitate the accomplishment of underlying off-policy reinforcement learning objectives. We apply our framework to two state-of-the-art off-policy algorithms and show that the resulting agents obtain relevant performance improvements while requiring fewer interactions with the environment per episode, improving computational efficiency.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here