Low-rank matrix reconstruction and clustering via approximate message passing

NeurIPS 2013  ·  Ryosuke Matsushita, Toshiyuki Tanaka ·

We study the problem of reconstructing low-rank matrices from their noisy observations. We formulate the problem in the Bayesian framework, which allows us to exploit structural properties of matrices in addition to low-rankedness, such as sparsity. We propose an efficient approximate message passing algorithm, derived from the belief propagation algorithm, to perform the Bayesian inference for matrix reconstruction. We have also successfully applied the proposed algorithm to a clustering problem, by formulating the problem of clustering as a low-rank matrix reconstruction problem with an additional structural property. Numerical experiments show that the proposed algorithm outperforms Lloyd's K-means algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here