Machine Learning for Touch Localization on Ultrasonic Wave Touchscreen

18 Feb 2022  ·  Sahar Bahrami, Jérémy Moriot, Patrice Masson, François Grondin ·

Classification and regression employing a simple Deep Neural Network (DNN) are investigated to perform touch localization on a tactile surface using ultrasonic guided waves. A robotic finger first simulates the touch action and captures the data to train a model. The model is then validated with data from experiments conducted with human fingers. The localization root mean square errors (RMSE) in time and frequency domains are presented. The proposed method provides satisfactory localization results for most human-machine interactions, with a mean error of 0.47 cm and standard deviation of 0.18 cm and a computing time of 0.44 ms. The classification approach is also adapted to identify touches on an access control keypad layout, which leads to an accuracy of 97% with a computing time of 0.28 ms. These results demonstrate that DNN-based methods are a viable alternative to signal processing-based approaches for accurate and robust touch localization using ultrasonic guided waves.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here