Machine learning time-local generators of open quantum dynamics

21 Jan 2021  ·  Paolo P. Mazza, Dominik Zietlow, Federico Carollo, Sabine Andergassen, Georg Martius, Igor Lesanovsky ·

In the study of closed many-body quantum systems one is often interested in the evolution of a subset of degrees of freedom. On many occasions it is possible to approach the problem by performing an appropriate decomposition into a bath and a system. In the simplest case the evolution of the reduced state of the system is governed by a quantum master equation with a time-independent, i.e. Markovian, generator. Such evolution is typically emerging under the assumption of a weak coupling between the system and an infinitely large bath. Here, we are interested in understanding to which extent a neural network function approximator can predict open quantum dynamics - described by time-local generators - from an underlying unitary dynamics. We investigate this question using a class of spin models, which is inspired by recent experimental setups. We find that indeed time-local generators can be learned. In certain situations they are even time-independent and allow to extrapolate the dynamics to unseen times. This might be useful for situations in which experiments or numerical simulations do not allow to capture long-time dynamics and for exploring thermalization occurring in closed quantum systems.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Quantum Gases