Majorana-based fermionic quantum computation

13 Feb 2018  ·  O'Brien T. E., Rożek P., Akhmerov A. R. ·

Because Majorana zero modes store quantum information non-locally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majoranas to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majoranas for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, and the simulation of Trotterized Hubbard Hamiltonian in $\mathcal{O}(1)$ time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Mesoscale and Nanoscale Physics