Mathematical Modeling Analysis and Optimization of Fungal Diversity Growth

4 Aug 2022  ·  Tongyue Shi, Haining Wang ·

This paper studied the relationship between the decomposition rate of fungi and temperature, humidity, fungus elongation, moisture tolerance and fungus density in a given volume in the presence of a variety of fungi, and established a series of models to describe the decomposition of fungi in different states. Since the volume of soil was given in this case, the latter two characteristics could be attributed to the influence of the number of fungal population on the decomposition rate. Based on the Logistic model, the relationship between the number of population and time was established, and finally the number of fungi in the steady state was obtained The interaction between different species of fungi was analyzed by Lotka-Volterra model, and the decomposition rate of various fungal combinations in different environments was obtained. After studying the one and two cases, we can extrapher from one to the other, and the community consisting of n fungal populations will be similar to the community consisting of n+1 fungal populations. After the study, we substituted the collected data into the model and found that the fungal community composed of two kinds of fungi had a lower decomposition rate of ground decomposition or wooden fiber than that of a single kind of fungus for the same kind of substance. We found that the fungus in warm and humid environment of decomposition rate is highest, the change of the atmospheric cause some fungal population growth rate decreases, there are also some will increase, which is associated with the nature of fungi.We analyzed the influence of environmental factors, namely temperature and humidity, on the model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here