Meta Objective Guided Disambiguation for Partial Label Learning

26 Aug 2022  ·  Bo-Shi Zou, Ming-Kun Xie, Sheng-Jun Huang ·

Partial label learning (PLL) is a typical weakly supervised learning framework, where each training instance is associated with a candidate label set, among which only one label is valid. To solve PLL problems, typically methods try to perform disambiguation for candidate sets by either using prior knowledge, such as structure information of training data, or refining model outputs in a self-training manner. Unfortunately, these methods often fail to obtain a favorable performance due to the lack of prior information or unreliable predictions in the early stage of model training. In this paper, we propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD), which aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set. Specifically, to alleviate the negative impact of false positive labels, we re-weight each candidate label based on the meta loss on the validation set. Then, the classifier is trained by minimizing the weighted cross entropy loss. The proposed method can be easily implemented by using various deep networks with the ordinary SGD optimizer. Theoretically, we prove the convergence property of meta objective and derive the estimation error bounds of the proposed method. Extensive experiments on various benchmark datasets and real-world PLL datasets demonstrate that the proposed method can achieve competent performance when compared with the state-of-the-art methods.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods