MFRL-BI: Design of a Model-free Reinforcement Learning Process Control Scheme by Using Bayesian Inference

17 Sep 2023  ·  YanRong Li, Juan Du, Wei Jiang ·

Design of process control scheme is critical for quality assurance to reduce variations in manufacturing systems. Taking semiconductor manufacturing as an example, extensive literature focuses on control optimization based on certain process models (usually linear models), which are obtained by experiments before a manufacturing process starts. However, in real applications, pre-defined models may not be accurate, especially for a complex manufacturing system. To tackle model inaccuracy, we propose a model-free reinforcement learning (MFRL) approach to conduct experiments and optimize control simultaneously according to real-time data. Specifically, we design a novel MFRL control scheme by updating the distribution of disturbances using Bayesian inference to reduce their large variations during manufacturing processes. As a result, the proposed MFRL controller is demonstrated to perform well in a nonlinear chemical mechanical planarization (CMP) process when the process model is unknown. Theoretical properties are also guaranteed when disturbances are additive. The numerical studies also demonstrate the effectiveness and efficiency of our methodology.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here