Mixed-Precision Inference Quantization: Radically Towards Faster inference speed, Lower Storage requirement, and Lower Loss

20 Jul 2022  ·  Daning Cheng, WenGuang Chen ·

Based on the model's resilience to computational noise, model quantization is important for compressing models and improving computing speed. Existing quantization techniques rely heavily on experience and "fine-tuning" skills. In the majority of instances, the quantization model has a larger loss than a full precision model. This study provides a methodology for acquiring a mixed-precise quantization model with a lower loss than the full precision model. In addition, the analysis demonstrates that, throughout the inference process, the loss function is mostly affected by the noise of the layer inputs. In particular, we will demonstrate that neural networks with massive identity mappings are resistant to the quantization method. It is also difficult to improve the performance of these networks using quantization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here