Model Predictive Control of Diesel Engine Emissions Based on Neural Network Modeling

6 Nov 2023  ·  Jiadi Zhang, Xiao Li, Ilya Kolmanovsky, Munechika Tsutsumi, Hayato Nakada ·

This paper addresses the control of diesel engine nitrogen oxides (NOx) and Soot emissions through the application of Model Predictive Control (MPC). The developments described in the paper are based on a high-fidelity model of the engine airpath and torque response in GT-Power, which is extended with a feedforward neural network (FNN)-based model of engine out (feedgas) emissions identified from experimental engine data to enable the controller co-simulation and performance verification. A Recurrent Neural Network (RNN) is then identified for use as a prediction model in the implementation of a nonlinear economic MPC that adjusts intake manifold pressure and EGR rate set-points to the inner loop airpath controller as well as the engine fueling rate. Based on GT-Power engine model and FNN emissions model, the closed-loop simulations of the control system and the plant model, over different driving cycles, demonstrate the capability to shape engine out emissions response by adjusting weights and constraints in economic MPC formulation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here