Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis

21 Mar 2024  ·  Hao Hao, Xiaoqun Zhang, Aimin Zhou ·

Black-box optimization problems, which are common in many real-world applications, require optimization through input-output interactions without access to internal workings. This often leads to significant computational resources being consumed for simulations. Bayesian Optimization (BO) and Surrogate-Assisted Evolutionary Algorithm (SAEA) are two widely used gradient-free optimization techniques employed to address such challenges. Both approaches follow a similar iterative procedure that relies on surrogate models to guide the search process. This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods, as well as the impact of model inaccuracies on algorithmic performance. A novel model-assisted strategy is introduced, which utilizes unevaluated solutions to generate offspring, leveraging the population-based search capabilities of evolutionary algorithm to enhance the effectiveness of model-assisted optimization. Experimental results demonstrate that the proposed approach outperforms mainstream Bayesian optimization algorithms in terms of accuracy and efficiency.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here