Modeling Choice via Self-Attention

11 Nov 2023  ·  Joohwan Ko, Andrew A. Li ·

Models of choice are a fundamental input to many now-canonical optimization problems in the field of Operations Management, including assortment, inventory, and price optimization. Naturally, accurate estimation of these models from data is a critical step in the application of these optimization problems in practice. Concurrently, recent advancements in deep learning have sparked interest in integrating these techniques into choice modeling. However, there is a noticeable research gap at the intersection of deep learning and choice modeling, particularly with both theoretical and empirical foundations. Thus motivated, we first propose a choice model that is the first to successfully (both theoretically and practically) leverage a modern neural network architectural concept (self-attention). Theoretically, we show that our attention-based choice model is a low-rank generalization of the Halo Multinomial Logit (Halo-MNL) model. We prove that whereas the Halo-MNL requires $\Omega(m^2)$ data samples to estimate, where $m$ is the number of products, our model supports a natural nonconvex estimator (in particular, that which a standard neural network implementation would apply) which admits a near-optimal stationary point with $O(m)$ samples. Additionally, we establish the first realistic-scale benchmark for choice model estimation on real data, conducting the most extensive evaluation of existing models to date, thereby highlighting our model's superior performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here