Multi-Fidelity Bayesian Optimization via Deep Neural Networks

NeurIPS 2020  ·  Shibo Li, Wei Xing, Mike Kirby, Shandian Zhe ·

Bayesian optimization (BO) is a popular framework to optimize black-box functions. In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy. To reduce the optimization cost, many multi-fidelity BO methods have been proposed. Despite their success, these methods either ignore or over-simplify the strong, complex correlations across the fidelities, and hence can be inefficient in estimating the objective function. To address this issue, we propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities to improve the objective function estimation and hence the optimization performance. We use sequential, fidelity-wise Gauss-Hermite quadrature and moment-matching to fulfill a mutual information-based acquisition function, which is computationally tractable and efficient. We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here