Paper

Multi-Modal Prototypes for Open-Set Semantic Segmentation

In semantic segmentation, adapting a visual system to novel object categories at inference time has always been both valuable and challenging. To enable such generalization, existing methods rely on either providing several support examples as visual cues or class names as textual cues. Through the development is relatively optimistic, these two lines have been studied in isolation, neglecting the complementary intrinsic of low-level visual and high-level language information. In this paper, we define a unified setting termed as open-set semantic segmentation (O3S), which aims to learn seen and unseen semantics from both visual examples and textual names. Our pipeline extracts multi-modal prototypes for segmentation task, by first single modal self-enhancement and aggregation, then multi-modal complementary fusion. To be specific, we aggregate visual features into several tokens as visual prototypes, and enhance the class name with detailed descriptions for textual prototype generation. The two modalities are then fused to generate multi-modal prototypes for final segmentation. On both \pascal and \coco datasets, we conduct extensive experiments to evaluate the framework effectiveness. State-of-the-art results are achieved even on more detailed part-segmentation, Pascal-Animals, by only training on coarse-grained datasets. Thorough ablation studies are performed to dissect each component, both quantitatively and qualitatively.

Results in Papers With Code
(↓ scroll down to see all results)