Multi-modal Representation Learning for Cross-modal Prediction of Continuous Weather Patterns from Discrete Low-Dimensional Data

30 Jan 2024  ·  Alif Bin Abdul Qayyum, Xihaier Luo, Nathan M. Urban, Xiaoning Qian, Byung-Jun Yoon ·

World is looking for clean and renewable energy sources that do not pollute the environment, in an attempt to reduce greenhouse gas emissions that contribute to global warming. Wind energy has significant potential to not only reduce greenhouse emission, but also meet the ever increasing demand for energy. To enable the effective utilization of wind energy, addressing the following three challenges in wind data analysis is crucial. Firstly, improving data resolution in various climate conditions to ensure an ample supply of information for assessing potential energy resources. Secondly, implementing dimensionality reduction techniques for data collected from sensors/simulations to efficiently manage and store large datasets. Thirdly, extrapolating wind data from one spatial specification to another, particularly in cases where data acquisition may be impractical or costly. We propose a deep learning based approach to achieve multi-modal continuous resolution wind data prediction from discontinuous wind data, along with data dimensionality reduction.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here