Multi-Precision Quantized Neural Networks via Encoding Decomposition of -1 and +1

31 May 2019  ·  Qigong Sun, Fanhua Shang, Kang Yang, Xiufang Li, Yan Ren, Licheng Jiao ·

The training of deep neural networks (DNNs) requires intensive resources both for computation and for storage performance. Thus, DNNs cannot be efficiently applied to mobile phones and embedded devices, which seriously limits their applicability in industry applications. To address this issue, we propose a novel encoding scheme of using {-1,+1} to decompose quantized neural networks (QNNs) into multi-branch binary networks, which can be efficiently implemented by bitwise operations (xnor and bitcount) to achieve model compression, computational acceleration and resource saving. Based on our method, users can easily achieve different encoding precisions arbitrarily according to their requirements and hardware resources. The proposed mechanism is very suitable for the use of FPGA and ASIC in terms of data storage and computation, which provides a feasible idea for smart chips. We validate the effectiveness of our method on both large-scale image classification tasks (e.g., ImageNet) and object detection tasks. In particular, our method with low-bit encoding can still achieve almost the same performance as its full-precision counterparts.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here