Multi-variable Hard Physical Constraints for Climate Model Downscaling

Global Climate Models (GCMs) are the primary tool to simulate climate evolution and assess the impacts of climate change. However, they often operate at a coarse spatial resolution that limits their accuracy in reproducing local-scale phenomena. Statistical downscaling methods leveraging deep learning offer a solution to this problem by approximating local-scale climate fields from coarse variables, thus enabling regional GCM projections. Typically, climate fields of different variables of interest are downscaled independently, resulting in violations of fundamental physical properties across interconnected variables. This study investigates the scope of this problem and, through an application on temperature, lays the foundation for a framework introducing multi-variable hard constraints that guarantees physical relationships between groups of downscaled climate variables.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here