Multispectral Compressive Imaging Strategies using Fabry-Pérot Filtered Sensors

6 Feb 2018  ·  Kévin Degraux, Valerio Cambareri, Bert Geelen, Laurent Jacques, Gauthier Lafruit ·

This paper introduces two acquisition device architectures for multispectral compressive imaging. Unlike most existing methods, the proposed computational imaging techniques do not include any dispersive element, as they use a dedicated sensor which integrates narrowband Fabry-P\'erot spectral filters at the pixel level. The first scheme leverages joint inpainting and super-resolution to fill in those voxels that are missing due to the device's limited pixel count. The second scheme, in link with compressed sensing, introduces spatial random convolutions, but is more complex and may be affected by diffraction. In both cases we solve the associated inverse problems by using the same signal prior. Specifically, we propose a redundant analysis signal prior in a convex formulation. Through numerical simulations, we explore different realistic setups. Our objective is also to highlight some practical guidelines and discuss their complexity trade-offs to integrate these schemes into actual computational imaging systems. Our conclusion is that the second technique performs best at high compression levels, in a properly sized and calibrated setup. Otherwise, the first, simpler technique should be favored.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here