MXM-CLR: A Unified Framework for Contrastive Learning of Multifold Cross-Modal Representations

20 Mar 2023  ·  Ye Wang, Bowei Jiang, Changqing Zou, Rui Ma ·

Multifold observations are common for different data modalities, e.g., a 3D shape can be represented by multi-view images and an image can be described with different captions. Existing cross-modal contrastive representation learning (XM-CLR) methods such as CLIP are not fully suitable for multifold data as they only consider one positive pair and treat other pairs as negative when computing the contrastive loss. In this paper, we propose MXM-CLR, a unified framework for contrastive learning of multifold cross-modal representations. MXM-CLR explicitly models and learns the relationships between multifold observations of instances from different modalities for more comprehensive representation learning. The key of MXM-CLR is a novel multifold-aware hybrid loss which considers multiple positive observations when computing the hard and soft relationships for the cross-modal data pairs. We conduct quantitative and qualitative comparisons with SOTA baselines for cross-modal retrieval tasks on the Text2Shape and Flickr30K datasets. We also perform extensive evaluations on the adaptability and generalizability of MXM-CLR, as well as ablation studies on the loss design and effects of batch sizes. The results show the superiority of MXM-CLR in learning better representations for the multifold data. The code is available at https://github.com/JLU-ICL/MXM-CLR.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods