Near-Optimal Bounds for Testing Histogram Distributions

14 Jul 2022  ·  Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Sihan Liu ·

We investigate the problem of testing whether a discrete probability distribution over an ordered domain is a histogram on a specified number of bins. One of the most common tools for the succinct approximation of data, $k$-histograms over $[n]$, are probability distributions that are piecewise constant over a set of $k$ intervals. The histogram testing problem is the following: Given samples from an unknown distribution $\mathbf{p}$ on $[n]$, we want to distinguish between the cases that $\mathbf{p}$ is a $k$-histogram versus $\varepsilon$-far from any $k$-histogram, in total variation distance. Our main result is a sample near-optimal and computationally efficient algorithm for this testing problem, and a nearly-matching (within logarithmic factors) sample complexity lower bound. Specifically, we show that the histogram testing problem has sample complexity $\widetilde \Theta (\sqrt{nk} / \varepsilon + k / \varepsilon^2 + \sqrt{n} / \varepsilon^2)$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here