NeuroRIS: Neuromorphic-Inspired Metasurfaces

Reconfigurable intelligent surfaces (RISs) operate similarly to electromagnetic (EM) mirrors and remarkably go beyond Snell law to generate an applicable EM environment allowing for flexible adaptation and fostering sustainability in terms of economic deployment and energy efficiency. However, the conventional RIS is controlled through high-latency field programmable gate array or micro-controller circuits usually implementing artificial neural networks (ANNs) for tuning the RIS phase array that have also very high energy requirements. Most importantly, conventional RIS are unable to function under realistic scenarios i.e, high-mobility/low-end user equipment (UE). In this paper, we benefit from the advanced computing power of neuromorphic processors and design a new type of RIS named \emph{NeuroRIS}, to supporting high mobility UEs through real time adaptation to the ever-changing wireless channel conditions. To this end, the neuromorphic processing unit tunes all the RIS meta-elements in the orders of $\rm{ns}$ for particular switching circuits e.g., varactors while exhibiting significantly low energy requirements since it is based on event-driven processing through spiking neural networks for accurate and efficient phase-shift vector design. Numerical results show that the NeuroRIS achieves very close rate performance to a conventional RIS-based on ANNs, while requiring significantly reduced energy consumption with the latter.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here