Nonlinear parameter-varying state-feedback design for a gyroscope using virtual control contraction metrics

11 Apr 2021  ·  Ruigang Wang, Patrick J. W. Koelwijn, Ian R. Manchester, Roland Tóth ·

In this paper, we present a virtual control contraction metric (VCCM) based nonlinear parameter-varying (NPV) approach to design a state-feedback controller for a control moment gyroscope (CMG) to track a user-defined trajectory set. This VCCM based nonlinear stabilization and performance synthesis approach, which is similar to linear parameter-varying (LPV) control approaches, allows to achieve exact guarantees of exponential stability and $\mathcal{L}_2$-gain performance on nonlinear systems with respect to all trajectories from the predetermined set, which is not the case with the conventional LPV methods. Simulation and experimental studies conducted in both fully- and under-actuated operating modes of the CMG show effectiveness of this approach compared to standard LPV control methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here