Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs

2 Nov 2023  ·  Alessandro Scagliotti, Sara Farinelli ·

The term "Normalizing Flows" is related to the task of constructing invertible transport maps between probability measures by means of deep neural networks. In this paper, we consider the problem of recovering the $W_2$-optimal transport map $T$ between absolutely continuous measures $\mu,\nu\in\mathcal{P}(\mathbb{R}^n)$ as the flow of a linear-control neural ODE. We first show that, under suitable assumptions on $\mu,\nu$ and on the controlled vector fields, the optimal transport map is contained in the $C^0_c$-closure of the flows generated by the system. Assuming that discrete approximations $\mu_N,\nu_N$ of the original measures $\mu,\nu$ are available, we use a discrete optimal coupling $\gamma_N$ to define an optimal control problem. With a $\Gamma$-convergence argument, we prove that its solutions correspond to flows that approximate the optimal transport map $T$. Finally, taking advantage of the Pontryagin Maximum Principle, we propose an iterative numerical scheme for the resolution of the optimal control problem, resulting in an algorithm for the practical computation of the approximated optimal transport map.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here