A simple improved low temperature correction for the hierarchical equations of motion

19 May 2022  ·  Thomas P Fay ·

The study of open system quantum dynamics has been transformed by the hierarchical equations of motion (HEOM) method, which gives the exact dynamics for a system coupled to a harmonic bath at arbitrary temperature and system-bath coupling strength. However in its standard form the method is only consistent with the weak-coupling quantum master equation at all temperatures when many auxiliary density operators are included in the hierarchy, even when low temperature corrections are included. Here we propose a new low temperature correction scheme for the termination of the hierarchy based on Zwanzig projection which alleviates this problem, and restores consistency with the weak-coupling master equation with a minimal hierarchy. The utility of the new correction scheme is demonstrated on a range of model systems, including the Fenna-Metthews-Olson complex. The new closure is found to improve convergence of the HEOM even beyond the weak-coupling limit and is very straightforward to implement in existing HEOM codes.

PDF Abstract

Categories


Chemical Physics Other Condensed Matter Quantum Physics