Obtaining Smoothly Navigable Approximation Sets in Bi-Objective Multi-Modal Optimization

Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find solutions well spread over all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found set of solutions is not smoothly navigable because the solutions belong to various niches, reducing the insight for decision makers. To tackle this issue, a new MMOEAs is proposed: the Multi-Modal B\'ezier Evolutionary Algorithm (MM-BezEA), which produces approximation sets that cover individual niches and exhibit inherent decision-space smoothness as they are parameterized by B\'ezier curves. MM-BezEA combines the concepts behind the recently introduced BezEA and MO-HillVallEA to find all locally optimal approximation sets. When benchmarked against the MMOEAs MO_Ring_PSO_SCD and MO-HillVallEA on MMOPs with linear Pareto sets, MM-BezEA was found to perform best in terms of best hypervolume.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here