On approximating $\nabla f$ with neural networks

28 Oct 2019  ·  Saeed Saremi ·

Consider a feedforward neural network $\psi: \mathbb{R}^d\rightarrow \mathbb{R}^d$ such that $\psi\approx \nabla f$, where $f:\mathbb{R}^d \rightarrow \mathbb{R}$ is a smooth function, therefore $\psi$ must satisfy $\partial_j \psi_i = \partial_i \psi_j$ pointwise. We prove a theorem that a $\psi$ network with more than one hidden layer can only represent one feature in its first hidden layer; this is a dramatic departure from the well-known results for one hidden layer. The proof of the theorem is straightforward, where two backward paths and a weight-tying matrix play the key roles. We then present the alternative, the implicit parametrization, where the neural network is $\phi: \mathbb{R}^d \rightarrow \mathbb{R}$ and $\nabla \phi \approx \nabla f$; in addition, a "soft analysis" of $\nabla \phi$ gives a dual perspective on the theorem. Throughout, we come back to recent probabilistic models that are formulated as $\nabla \phi \approx \nabla f$, and conclude with a critique of denoising autoencoders.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here