On Complexity Bounds for the Maximal Admissible Set of Linear Time-Invariant Systems

4 Feb 2023  ·  Hamid R. Ossareh, Ilya Kolmanovsky ·

Given a dynamical system with constrained outputs, the maximal admissible set (MAS) is defined as the set of all initial conditions such that the output constraints are satisfied for all time. It has been previously shown that for discrete-time, linear, time-invariant, stable, observable systems with polytopic constraints, this set is a polytope described by a finite number of inequalities (i.e., has finite complexity). However, it is not possible to know the number of inequalities apriori from problem data. To address this gap, this contribution presents two computationally efficient methods to obtain upper bounds on the complexity of the MAS. The first method is algebraic and is based on matrix power series, while the second is geometric and is based on Lyapunov analysis. The two methods are rigorously introduced, a detailed numerical comparison between the two is provided, and an extension to systems with constant inputs is presented. Knowledge of such upper bounds can speed up the computation of MAS, and can be beneficial for defining the memory and computational requirements for storing and processing the MAS, as well as the control algorithms that leverage the MAS.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods