On-device modeling of user's social context and familiar places from smartphone-embedded sensor data

27 Jun 2023  ·  Mattia Giovanni Campana, Franca Delmastro ·

Context modeling and recognition are crucial for adaptive mobile and ubiquitous computing. Context-awareness in mobile environments relies on prompt reactions to context changes. However, current solutions focus on limited context information processed on centralized architectures, risking privacy leakage and lacking personalization. On-device context modeling and recognition are emerging research trends, addressing these concerns. Social interactions and visited locations play significant roles in characterizing daily life scenarios. This paper proposes an unsupervised and lightweight approach to model the user's social context and locations directly on the mobile device. Leveraging the ego-network model, the system extracts high-level, semantic-rich context features from smartphone-embedded sensor data. For the social context, the approach utilizes data on physical and cyber social interactions among users and their devices. Regarding location, it prioritizes modeling the familiarity degree of specific locations over raw location data, such as GPS coordinates and proximity devices. The effectiveness of the proposed approach is demonstrated through three sets of experiments, employing five real-world datasets. These experiments evaluate the structure of social and location ego networks, provide a semantic evaluation of the proposed models, and assess mobile computing performance. Finally, the relevance of the extracted features is showcased by the improved performance of three machine learning models in recognizing daily-life situations. Compared to using only features related to physical context, the proposed approach achieves a 3% improvement in AUROC, 9% in Precision, and 5% in Recall.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods