On the Covariance-Hessian Relation in Evolution Strategies

10 Jun 2018  ·  Ofer M. Shir, Amir Yehudayoff ·

We consider Evolution Strategies operating only with isotropic Gaussian mutations on positive quadratic objective functions, and investigate the covariance matrix when constructed out of selected individuals by truncation. We prove that the covariance matrix over $(1,\lambda)$-selected decision vectors becomes proportional to the inverse of the landscape Hessian as the population-size $\lambda$ increases. This generalizes a previous result that proved an equivalent phenomenon when sampling was assumed to take place in the vicinity of the optimum. It further confirms the classical hypothesis that statistical learning of the landscape is an inherent characteristic of standard Evolution Strategies, and that this distinguishing capability stems only from the usage of isotropic Gaussian mutations and rank-based selection. We provide broad numerical validation for the proven results, and present empirical evidence for its generalization to $(\mu,\lambda)$-selection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here