On the implementation of flux limiters in algebraic frameworks

6 Oct 2021  ·  Nicolás Valle, Xavier Álvarez-Farré, Andrey Gorobets, Jesús Castro, Assensi Oliva, F. Xavier Trias ·

The use of flux limiters is widespread within the scientific computing community to capture shock discontinuities and are of paramount importance for the temporal integration of high-speed aerodynamics, multiphase flows, and hyperbolic equations in general. Meanwhile, the breakthrough of new computing architectures and the hybridization of supercomputer systems pose a huge portability challenge, particularly for legacy codes, since the computing subroutines that form the algorithms, the so-called kernels, must be adapted to various complex parallel programming paradigms... From this perspective, the development of innovative implementations relying on a minimalist set of kernels simplifies the deployment of scientific computing software on state-of-the-art supercomputers, while it requires the reformulation of algorithms, such as the aforementioned flux limiters. Equipped with basic algebraic topology and graph theory underlying the classical mesh concept, a new flux limiter formulation is presented based on the adoption of algebraic data structures and kernels. As a result, traditional flux limiters are cast into a stream of only two types of computing kernels: sparse matrix-vector multiplication and generalized pointwise binary operators. The newly proposed formulation eases the deployment of such a numerical technique in massively parallel, potentially hybrid, computing systems and is demonstrated for a canonical advection problem. read more

PDF Abstract
No code implementations yet. Submit your code now


Computational Physics Fluid Dynamics