An Optimization and Generalization Analysis for Max-Pooling Networks

22 Feb 2020  ·  Alon Brutzkus, Amir Globerson ·

Max-Pooling operations are a core component of deep learning architectures. In particular, they are part of most convolutional architectures used in machine vision, since pooling is a natural approach to pattern detection problems. However, these architectures are not well understood from a theoretical perspective. For example, we do not understand when they can be globally optimized, and what is the effect of over-parameterization on generalization. Here we perform a theoretical analysis of a convolutional max-pooling architecture, proving that it can be globally optimized, and can generalize well even for highly over-parameterized models. Our analysis focuses on a data generating distribution inspired by pattern detection problem, where a "discriminative" pattern needs to be detected among "spurious" patterns. We empirically validate that CNNs significantly outperform fully connected networks in our setting, as predicted by our theoretical results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here