On the Performance of Low-Altitude UAV-Enabled Secure AF Relaying with Cooperative Jamming and SWIPT

17 Jun 2019  ·  Milad Tatar Mamaghani, Yi Hong ·

This paper proposes a novel cooperative secure unmanned aerial vehicle (UAV) aided transmission protocol, where a source (Alice) sends confidential information to a destination (Bob) via an energy-constrained UAV-mounted amplify-and-forward (AF) relay in the presence of a ground eavesdropper (Eve). We adopt destination-assisted cooperative jamming (CJ) as well as simultaneous wireless information and power transfer (SWIPT) at the UAV-mounted relay to enhance physical-layer security (PLS) and transmission reliability. Assuming a low altitude UAV, we derive connection probability (CP), secrecy outage probability (SOP), instantaneous secrecy rate, and average secrecy rate (ASR) of the proposed protocol over Air-Ground (AG) channels, which are modeled as Rician fading with elevation-angel dependent parameters. By simulations, we verify our theoretical results and demonstrate significant performance improvement of our protocol, when compared to conventional transmission protocol with ground relaying and UAV-based transmission protocol without destination-assisted jamming. Finally, we evaluate the impacts of different system parameters and different UAV's locations on the proposed protocol in terms of ASR.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Information Theory Signal Processing Information Theory

Datasets


  Add Datasets introduced or used in this paper