On the Power of Interactive Proofs for Learning

We continue the study of doubly-efficient proof systems for verifying agnostic PAC learning, for which we obtain the following results. - We construct an interactive protocol for learning the $t$ largest Fourier characters of a given function $f \colon \{0,1\}^n \to \{0,1\}$ up to an arbitrarily small error, wherein the verifier uses $\mathsf{poly}(t)$ random examples. This improves upon the Interactive Goldreich-Levin protocol of Goldwasser, Rothblum, Shafer, and Yehudayoff (ITCS 2021) whose sample complexity is $\mathsf{poly}(t,n)$. - For agnostically learning the class $\mathsf{AC}^0[2]$ under the uniform distribution, we build on the work of Carmosino, Impagliazzo, Kabanets, and Kolokolova (APPROX/RANDOM 2017) and design an interactive protocol, where given a function $f \colon \{0,1\}^n \to \{0,1\}$, the verifier learns the closest hypothesis up to $\mathsf{polylog}(n)$ multiplicative factor, using quasi-polynomially many random examples. In contrast, this class has been notoriously resistant even for constructing realisable learners (without a prover) using random examples. - For agnostically learning $k$-juntas under the uniform distribution, we obtain an interactive protocol, where the verifier uses $O(2^k)$ random examples to a given function $f \colon \{0,1\}^n \to \{0,1\}$. Crucially, the sample complexity of the verifier is independent of $n$. We also show that if we do not insist on doubly-efficient proof systems, then the model becomes trivial. Specifically, we show a protocol for an arbitrary class $\mathcal{C}$ of Boolean functions in the distribution-free setting, where the verifier uses $O(1)$ labeled examples to learn $f$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here