Adversarial Calibrated Regression for Online Decision Making

23 Feb 2023  ·  Volodymyr Kuleshov, Shachi Deshpande ·

Accurately estimating uncertainty is an essential component of decision-making and forecasting in machine learning. However, existing uncertainty estimation methods may fail when data no longer follows the distribution seen during training. Here, we introduce online uncertainty estimation algorithms that are guaranteed to be reliable on arbitrary streams of data points, including data chosen by an adversary. Specifically, our algorithms perform post-hoc recalibration of a black-box regression model and produce outputs that are provably calibrated -- i.e., an 80% confidence interval will contain the true outcome 80% of the time -- and that have low regret relative to the learning objective of the base model. We apply our algorithms in the context of Bayesian optimization, an online model-based decision-making task in which the data distribution shifts over time, and observe accelerated convergence to improved optima. Our results suggest that robust uncertainty quantification has the potential to improve online decision-making.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods