Operationalizing Machine Learning: An Interview Study

16 Sep 2022  ·  Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, Aditya G. Parameswaran ·

Organizations rely on machine learning engineers (MLEs) to operationalize ML, i.e., deploy and maintain ML pipelines in production. The process of operationalizing ML, or MLOps, consists of a continual loop of (i) data collection and labeling, (ii) experimentation to improve ML performance, (iii) evaluation throughout a multi-staged deployment process, and (iv) monitoring of performance drops in production. When considered together, these responsibilities seem staggering -- how does anyone do MLOps, what are the unaddressed challenges, and what are the implications for tool builders? We conducted semi-structured ethnographic interviews with 18 MLEs working across many applications, including chatbots, autonomous vehicles, and finance. Our interviews expose three variables that govern success for a production ML deployment: Velocity, Validation, and Versioning. We summarize common practices for successful ML experimentation, deployment, and sustaining production performance. Finally, we discuss interviewees' pain points and anti-patterns, with implications for tool design.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here